
Crypto Corner
Editors: Peter Gutmann, pgut001@cs.auckland.ac.nz
David Naccache, david.naccache@ens.fr
Charles C. Palmer, ccpalmer@us.ibm.com

72	 COPublished by the IEEE Computer and Reliability Societies ■ 1540-7993/09/$26.00 © 2009 IEEE ■ NOVEMBER/DECEMBER 2009

seal, measured the beam’s modu-
lation, and recreated the conversa-
tions in the room. This listening
method went undetected for years.

More recently, side channel
attacks have become a power-
ful threat to cryptography. One
of the first papers on side channel
attacks showed how to recover an
RSA private key merely by timing
how long it took to decrypt a mes-
sage.1 This was possible because
RSA and other public-key crypto-
systems work with large numbers
(for example, 2,048 bits), whereas
modern CPUs have a smaller word
size. Crypto implementations
compensate by using multipreci-
sion arithmetic, representing large
numbers by an array of words and
using a loop to carry overflows
from one word to the next.

To raise a multiprecision num-
ber to an exponent, systems such
as RSA commonly use square-and-
multiply. This optimization de-
composes an exponentiation into a
series of squarings (x2) and condi-
tional multiplies (* x), which oc-
cur if the bit in question is a one.
This is similar to pencil-and-paper
multiplication, in which trailing
zeros mean that you shift the re-
sult one decimal place to the left
while nonzero digits are multi-
plied and added to the result.

Because the multiply step is
conditional, an attacker gains in-
formation about the total number
of one bits with each decryption.
By measuring the total time to
perform a multiprecision expo-
nentiation with different input
messages, the attacker can eventu-
ally recover the entire private key
or enough to brute-force the rest.

vulnerable to side channel attacks
because of its strict requirements
for absolute secrecy. In the soft-
ware world, side channel attacks
have sometimes been dismissed as
impractical. However, new system
architecture features, such as larger
cache sizes and multicore proces-
sors, have increased the prevalence
of side channels and quality of mea-
surement available to an attacker.
Software developers must be aware
of the potential for side channel at-
tacks and plan appropriately.

History of
Side Channel Attacks
Side channels are a variant of the
classic covert-channel problem.
Covert channels involve two or
more processes collaborating to
communicate via a shared re-
source that they can both affect
and measure. Attackers can ex-
ploit these channels to bypass op-
erating system protections such as
mandatory access control that are
intended to keep the processes
separate. For example, one process
can allocate memory while the
other measures the amount of free
memory. Through repetition of
this behavior, the first process can
slowly communicate information
to the second. The channel’s sig-
nal-to-noise (S/N) ratio measures

its quality. For example, memory
allocations by unrelated processes
might skew some measurements,
so a particularly busy system
might have a low S/N ratio. Error
correction methods can assist with
this case.

Whereas covert channels in-
volve the problem of preventing
cooperation, side channel attacks
are a purely adversarial problem.
Side channels emerge because
computation occurs on a non-ide-
al system, composed of transistors,
wires, power supplies, memory,
and peripherals. Each component
has characteristics that vary with
the instructions and data being
processed. When this variance is
measurable by an attacker, a side
channel is present.

Intelligence agencies have of-
ten relied on side channel attacks
to monitor their foes. In one clev-
er incident, the Soviet Union pro-
vided a large wooden seal to the
American consulate in Moscow.
The US ambassador proudly hung
it in his office after it had been
examined for covert transmitters.
It appeared to be clean. Unbe-
knownst to the ambassador, the
seal contained a carefully designed
cavity that vibrated in response
to sounds in the room. The spies
transmitted a radio beam at the

W
hen it comes to cryptographic software,

side channels are an often-overlooked

threat. A side channel is any observable

side effect of computation that an attack-

er could measure and possibly influence. Crypto is especially

Nate Lawson

Root Labs

Side Channel Attacks on
Cryptographic Software

Crypto Corner

	 www.computer.org/security� 73

Timing attacks have continu-
ally improved, even being per-
formed against an SSL (Secure
Sockets Layer) implementation
over a network.2 New ways to fil-
ter jitter have improved the distin-
guishability to 200 ns over a LAN
and 30 ms over the Internet.3 At-
tacks have also exploited new side
channels. Power consumption, RF
and electromagnetic emissions,
sound, vibration, and even heat
give away information about secret
computations. These attacks aren’t
merely the subject of research pa-
pers. Smartcards used for payment,
transit, and satellite TV have been
compromised by both active fault
induction attacks (“glitching”) and
side channel attacks. Hackers used
a timing attack against a secret
key stored in the Xbox360 CPU
to forge an authenticator and load
their own code.4

Embedded-systems designers
are no longer the only ones who
must prevent side channel attacks.
Previously, network-based timing
attacks against SSL were the only
side channel attack most software
developers needed to consider.
But today, virtualization and ap-
plication-hosting services such as
Amazon S3 have given attackers
a more privileged vantage point
of running code on the same sys-
tem (possibly even at the same
privilege level) as the target’s code.
Also, high-speed multicore CPUs
with large caches and complicated
instruction- and data-dependent
behavior provide more possibili-
ties for side channels and greater
precision for measurements.

To illustrate side channel at-
tacks against software cryptogra-
phy, I analyze three recent attacks.
Each is increasingly more pow-
erful, to the point where the at-
tacker can recover an entire RSA
key by measuring the behavior of
a single decryption operation.

Keeping the Correct
Answer Secret
The HMAC (Hash Message

Authentication Code) hash
construction is often used to au-
thenticate messages. To compute
a given message’s HMAC, the
sender hashes the message and
a secret key twice using a cryp-
tographic hash algorithm (for
example, SHA-256). The re-
sult is attached to the message.
The recipient then calculates the
message’s HMAC via the same
process and compares the result
to the value included with the
message. If they match, the mes-
sage wasn’t tampered with after
the sender calculated the HMAC.

One subtlety with this pro-
cess is that the value the recipient
calculates must be kept secret.
Consider what would happen if
the result were revealed to the
sender in the case of a mismatch,
perhaps as part of an error mes-
sage. An attacker could submit a
message with an invalid HMAC
field, observe the error message,
and then resend the same mes-
sage with the correct value at-
tached. The recipient would
accept this message as valid, even
though the sender didn’t create
the authenticator. Although most
systems probably don’t reveal the
correct HMAC value directly,
a side channel attack can often
produce the same effect.

I recently reviewed the open-
source Google Keyczar cryp-
tographic library for possible
flaws.5 This library provides use-
ful high-level key management
features, with separate imple-
mentations in Java, Python,
and C++. Keyczar includes an

HMAC implementation for au-
thenticating messages.

The Python code compared
the received and calculated byte
values as follows:

return self.Sign(msg) ==
sig_bytes

The Java code was equivalent.
The underlying compari-

son operator for both high-level
languages performs a byte-wise
match of the two arrays. If any el-
ement didn’t match, the compari-
son loop would terminate early.
This would provide a timing side
channel in which the attacker
could iteratively fill in guesses for
each byte of the HMAC field, re-
submitting the same message each
time. When the guess was cor-
rect, the comparison would take a
little longer. Eventually, when the
whole HMAC was correct, the re-
cipient would accept the message.

An implementation of this at-
tack over a TCP connection to
localhost took about a thousand
queries per byte of the secret key.
This means that an attacker could
find a 128-bit key in less than a
few minutes. Because the array
comparison operators in Java and
Python aren’t implemented na-
tively, the timing difference for
each loop iteration was relatively
large. But even if there was more
network jitter or the comparison
loop was faster, the attacker could
simply take more samples, apply
an appropriate filter, and perform
a statistical hypothesis test to de-
termine which guess was correct.

The solution to this problem is
to implement a comparison func-
tion that doesn’t terminate early.
Although this might sound easy
at first, eliminating all conditional
branches from a comparison loop

is surprisingly difficult. Even with
a correct algorithm, some un-
derlying detail of the high-level
language implementation (such
as garbage collection) could still

Power consumption, RF and electromagnetic emissions,

sound, vibration, and even heat give away information

about secret computations.

Crypto Corner

74	IEEE SECURITY & PRIVACY

leave a measurable timing differ-
ence. The standard C memcmp()
function is unsafe as well because
it also terminates early.

Footprints in the Cache
Like the original RSA timing at-
tack, the HMAC timing attack
combines many measurements of
the entire operation to find the
target’s secret. However, more
powerful side channel attacks can
give insight into an algorithm’s
intermediate working values, re-
vealing the secret more quickly.

Modern systems employ a
CPU cache to keep frequently ac-
cessed memory close to where it’s
needed. When data for a given ad-
dress is in the cache, it’s returned
immediately. If not, it’s fetched
from memory into the cache,
stalling the CPU for a few more
cycles. A cache is often divided
into blocks called lines.

Because a cache is smaller than
the memory it shadows, the CPU
must have a policy for filling and
reusing its space. The most com-
mon implementation is a set asso-

ciative cache, which maps multiple
addresses to the same cache line
on the basis of some fraction of
the upper address bits. For exam-
ple, the addresses 0x100, 0x200,
and 0x800 would all use the same
cache line if the cache had 256
lines of one byte each. “Set” refers
to the number of possible destina-
tion cache lines per address (that
is, N-way). The CPU evicts older
entries when data is loaded into an
already-filled cache line.

AES (Advanced Encryption
Standard) is a standard block cipher.
It encrypts and decrypts data with
a secret key, using a combination
of primitives such as MixColumns,
ShiftRows, and SubBytes over
many rounds (10 for a 128-bit
key). A common optimization
technique on 32-bit processors is to
precompute a series of tables on the
basis of the combination of these
primitives. AES encryption then
becomes a series of table lookups
and XOR operations.

Because the index for these
AES tables is the XOR of a plain-
text byte and a key byte, the in-
dices themselves must remain
secret. However, a spy process
running on the same system can
observe the variable timing of
the AES encryption due to cache
behavior, narrowing down the
possible values for the key.6 Even
if running a spy process isn’t pos-
sible, a remote attacker can of-
ten trigger changes in the system
cache state by interacting with
other processes and timing those
unrelated tasks’ behavior.

Dag Arne Osvik and his col-
leagues have described two useful
ways to induce variability and ob-
serve cache behavior: Evict+Time
and Prime+Probe.6

Evict+Time works as follows:

1.	Trigger an encryption in the
target process.

2.	Evict memory from chosen
cache lines by accessing the
appropriate addresses in the
attacker’s process.

3.	Trigger and time another en-
cryption of the same plaintext.

The first step ensures that all the
AES lookup tables accessed by
the given plaintext and key are
cached. The second step forces
the CPU to evict part of one AES
table that the attacker is target-
ing, on the basis of a guess of the
key byte. The final step tests the
attacker’s hypothesis. If a cache
miss occurs and the AES en-
cryption takes longer than other
cases, the guess for the XOR of
the plaintext and key bytes was
correct and caused the CPU to
reload the table from RAM after
it had been evicted. If not, the
guess was incorrect. The attacker
repeats this process to narrow the
possible key values.

Prime+Probe (see Figure 1) is
more powerful. It’s analogous to
placing a film negative behind an
object and measuring the outline
cast by the object’s shadow. Instead
of timing the encryption process,
which is subject to noise and jit-
ter due to surrounding code in
the target, the attacker repeatedly
times accesses to its own memory
while the target encrypts. Each
time an encryption occurs, the
CPU evicts one or more lines of
the attacker’s memory from the
cache, causing timing variation.
Because the cache eviction is local
to the attacker, countermeasures
such as randomizing or normaliz-
ing the total encryption time have
no effect.

Such an attack isn’t merely a
timing attack. Although time is
the method for probing cache be-
havior, this attack could use other
methods to determine the cache
state. For example, if an instruc-
tion provided the number of valid
cache lines for the current task, it
would directly provide the same
information obtained from this
timing side channel.

Intel and AMD (and previ-
ously, Via) introduced AES in-
structions to address this problem

AES process

Cache

Spy process

Figure 1. In a Prime+Probe attack, a spy process probes

the cache by monitoring timing of accesses to its

own memory. As the target process encrypts, it evicts

portions of the attacker’s memory from the cache,

resulting in longer access times. The access times

for the individual regions of the attacker’s memory

correspond to which tables the encryption process

accessed, and thus the target’s key.

Crypto Corner

	 www.computer.org/security� 75

and increase performance. Unfor-
tunately, owing to the structure
of AES, there appears to be no
way to build a high-performance
implementation on a general-pur-
pose CPU while avoiding cache
side channels.

Which Way Did He Go?
A related but even more powerful
attack uses the branch prediction
cache’s status as a side channel.7
Instead of detecting memory ac-
cesses to the key data, this attack
determines the code path the tar-
get process takes while executing
the encryption code.

As I previously described,
square-and-multiply has an op-
tional multiplication step. If the at-
tacker can detect when this branch
is taken, he or she can determine
which bits of the key are ones.
(Other, more optimized routines
such as sliding-window exponen-
tiation have similar weaknesses.)

Because modern CPUs have a
deep pipeline, they implement a
branch prediction unit, which keeps
track of the target address and
whether the branch was taken in
a cache called the branch prediction
target buffer (BTB). As with the
memory cache, an attacker can
influence and measure the cache
state by performing jumps and
timing either the encryption pro-
cess (as in Evict+Time) or its own
execution speed (Prime+Probe).

One potential hurdle for
branch prediction side channel at-
tacks is disruption due to support
code or other processes running.
This adds noise to the measure-
ments. However, Onur Aciiçmez
and his colleagues discovered that
this noise was highly periodic.7 By
taking several different measure-
ments, they could select the one
with the lowest noise and use it
as the source for the key bits they
were detecting. Unlike the cache
attacks on AES, such an attack
can derive enough key bits from a
single trace that repeated analysis
is unnecessary.

S ide channel attacks were once
esoteric, remaining the do-

main of special-purpose hardware.
However, with the advent of cloud
computing and virtualized servers,
you can no longer assume that at-
tackers are remote. Advanced sta-
tistical methods and modeling have
given them precise measurements
independent of jitter. Meanwhile,
CPUs’ increasing microarchitec-
tural complexity has created more
side channels to exploit. Any soft-
ware developer who writes or
deploys an application utilizing
cryptography must be aware of this
powerful class of attacks.

References
1.	 P. Kocher, “Timing Attacks

on Implementations of Diffie-
Hellman, RSA, DSS, and Other
Systems,” Cryptography Research,
1995; www.cryptography.com/
resources/whitepapers/Timing
Attacks.pdf.

2.	 D. Brumley and D. Boneh, “Re-
mote Timing Attacks Are Prac-
tical,” Proc. 12th Conf. Usenix
Security Symp., Usenix Assoc.,
2003, p. 1.

3.	 S.A. Crosby, D.S. Wallach, and
R.H. Riedi, “Opportunities and
Limits of Remote Timing At-
tacks,” ACM Trans. Information
and System Security, vol. 12, no.
3, article 17; www.cs.rice.edu/
~dwal lach/pub/crosby-timing
2009.pdf.

4.	 “Timing Attack Tested Success-
fully: Downgrade from Any Ker-
nel without CPU-Key”; www.
xbox-scene.com/xbox1data/sep/
EElZluZypZpmixPJrS.php.

5.	 N. Lawson, “Timing Attack
on Google Keyzar,” blog, 28
May 2009; http://rdist.root.org/
2009/05/28/timing-attack-in
-google-keyczar-library.

6.	 D.A. Osvik, A. Shamir, and E.
Tromer, “Cache Attacks and
Countermeasures: The Case of
AES,” Topics in Cryptology—CT-
RSA 2006, LNCS 3860, Spring-
er, 2006; pp. 1–20.

7.	 O. Aciiçmez, Ç.K. Koç, and J.-P.

Seifert, “On the Power of Simple
Branch Prediction Analysis,” Proc.
2nd ACM Symp. Information, Com-
puter and Communications Security,
ACM Press, 2006, pp. 312–320.

Nate Lawson is the founder of Root

Labs, a security consulting practice fo-

cusing on kernel, embedded-platform,

and cryptography design and analysis.

Contact him at nate@rootlabs.com.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

