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seal, measured the beam’s modu-
lation, and recreated the conversa-
tions in the room. This listening 
method went undetected for years.

More recently, side channel 
attacks have become a power-
ful threat to cryptography. One 
of the first papers on side channel 
attacks showed how to recover an 
RSA private key merely by timing 
how long it took to decrypt a mes-
sage.1 This was possible because 
RSA and other public-key crypto-
systems work with large numbers 
(for example, 2,048 bits), whereas 
modern CPUs have a smaller word 
size. Crypto implementations 
compensate by using multipreci-
sion arithmetic, representing large 
numbers by an array of words and 
using a loop to carry overflows 
from one word to the next.

To raise a multiprecision num-
ber to an exponent, systems such 
as RSA commonly use square-and-
multiply. This optimization de-
composes an exponentiation into a 
series of squarings (x2) and condi-
tional multiplies (* x), which oc-
cur if the bit in question is a one. 
This is similar to pencil-and-paper 
multiplication, in which trailing 
zeros mean that you shift the re-
sult one decimal place to the left 
while nonzero digits are multi-
plied and added to the result.

Because the multiply step is 
conditional, an attacker gains in-
formation about the total number 
of one bits with each decryption. 
By measuring the total time to 
perform a multiprecision expo-
nentiation with different input 
messages, the attacker can eventu-
ally recover the entire private key 
or enough to brute-force the rest.

vulnerable to side channel attacks 
because of its strict requirements 
for absolute secrecy. In the soft-
ware world, side channel attacks 
have sometimes been dismissed as 
impractical. However, new system 
architecture features, such as larger 
cache sizes and multicore proces-
sors, have increased the prevalence 
of side channels and quality of mea-
surement available to an attacker. 
Software developers must be aware 
of the potential for side channel at-
tacks and plan appropriately.

History of  
Side Channel Attacks
Side channels are a variant of the 
classic covert-channel problem. 
Covert channels involve two or 
more processes collaborating to 
communicate via a shared re-
source that they can both affect 
and measure. Attackers can ex-
ploit these channels to bypass op-
erating system protections such as 
mandatory access control that are 
intended to keep the processes 
separate. For example, one process 
can allocate memory while the 
other measures the amount of free 
memory. Through repetition of 
this behavior, the first process can 
slowly communicate information 
to the second. The channel’s sig-
nal-to-noise (S/N) ratio measures 

its quality. For example, memory 
allocations by unrelated processes 
might skew some measurements, 
so a particularly busy system 
might have a low S/N ratio. Error 
correction methods can assist with 
this case.

Whereas covert channels in-
volve the problem of preventing 
cooperation, side channel attacks 
are a purely adversarial problem. 
Side channels emerge because 
computation occurs on a non-ide-
al system, composed of transistors, 
wires, power supplies, memory, 
and peripherals. Each component 
has characteristics that vary with 
the instructions and data being 
processed. When this variance is 
measurable by an attacker, a side 
channel is present.

Intelligence agencies have of-
ten relied on side channel attacks 
to monitor their foes. In one clev-
er incident, the Soviet Union pro-
vided a large wooden seal to the 
American consulate in Moscow. 
The US ambassador proudly hung 
it in his office after it had been 
examined for covert transmitters. 
It appeared to be clean. Unbe-
knownst to the ambassador, the 
seal contained a carefully designed 
cavity that vibrated in response 
to sounds in the room. The spies 
transmitted a radio beam at the 
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Timing attacks have continu-
ally improved, even being per-
formed against an SSL (Secure 
Sockets Layer) implementation 
over a network.2 New ways to fil-
ter jitter have improved the distin-
guishability to 200 ns over a LAN 
and 30 ms over the Internet.3 At-
tacks have also exploited new side 
channels. Power consumption, RF 
and electromagnetic emissions, 
sound, vibration, and even heat 
give away information about secret 
computations. These attacks aren’t 
merely the subject of research pa-
pers. Smartcards used for payment, 
transit, and satellite TV have been 
compromised by both active fault 
induction attacks (“glitching”) and 
side channel attacks. Hackers used 
a timing attack against a secret 
key stored in the Xbox360 CPU 
to forge an authenticator and load 
their own code.4

Embedded-systems designers 
are no longer the only ones who 
must prevent side channel attacks. 
Previously, network-based timing 
attacks against SSL were the only 
side channel attack most software 
developers needed to consider. 
But today, virtualization and ap-
plication-hosting services such as 
Amazon S3 have given attackers 
a more privileged vantage point 
of running code on the same sys-
tem (possibly even at the same 
privilege level) as the target’s code. 
Also, high-speed multicore CPUs 
with large caches and complicated 
instruction- and data-dependent 
behavior provide more possibili-
ties for side channels and greater 
precision for measurements.

To illustrate side channel at-
tacks against software cryptogra-
phy, I analyze three recent attacks. 
Each is increasingly more pow-
erful, to the point where the at-
tacker can recover an entire RSA 
key by measuring the behavior of 
a single decryption operation.

Keeping the Correct 
Answer Secret
The HMAC (Hash Message 

Authentication Code) hash 
construction is often used to au-
thenticate messages. To compute 
a given message’s HMAC, the 
sender hashes the message and 
a secret key twice using a cryp-
tographic hash algorithm (for 
example, SHA-256). The re-
sult is attached to the message. 
The recipient then calculates the 
message’s HMAC via the same 
process and compares the result 
to the value included with the 
message. If they match, the mes-
sage wasn’t tampered with after 
the sender calculated the HMAC.

One subtlety with this pro-
cess is that the value the recipient 
calculates must be kept secret. 
Consider what would happen if 
the result were revealed to the 
sender in the case of a mismatch, 
perhaps as part of an error mes-
sage. An attacker could submit a 
message with an invalid HMAC 
field, observe the error message, 
and then resend the same mes-
sage with the correct value at-
tached. The recipient would 
accept this message as valid, even 
though the sender didn’t create 
the authenticator. Although most 
systems probably don’t reveal the 
correct HMAC value directly, 
a side channel attack can often 
produce the same effect.

I recently reviewed the open-
source Google Keyczar cryp-
tographic library for possible 
flaws.5 This library provides use-
ful high-level key management 
features, with separate imple-
mentations in Java, Python, 
and C++. Keyczar includes an 

HMAC implementation for au-
thenticating messages.

The Python code compared 
the received and calculated byte 
values as follows:

return self.Sign(msg) == 
sig_bytes

The Java code was equivalent.
The underlying compari-

son operator for both high-level 
languages performs a byte-wise 
match of the two arrays. If any el-
ement didn’t match, the compari-
son loop would terminate early. 
This would provide a timing side 
channel in which the attacker 
could iteratively fill in guesses for 
each byte of the HMAC field, re-
submitting the same message each 
time. When the guess was cor-
rect, the comparison would take a 
little longer. Eventually, when the 
whole HMAC was correct, the re-
cipient would accept the message.

An implementation of this at-
tack over a TCP connection to 
localhost took about a thousand 
queries per byte of the secret key. 
This means that an attacker could 
find a 128-bit key in less than a 
few minutes. Because the array 
comparison operators in Java and 
Python aren’t implemented na-
tively, the timing difference for 
each loop iteration was relatively 
large. But even if there was more 
network jitter or the comparison 
loop was faster, the attacker could 
simply take more samples, apply 
an appropriate filter, and perform 
a statistical hypothesis test to de-
termine which guess was correct.

The solution to this problem is 
to implement a comparison func-
tion that doesn’t terminate early. 
Although this might sound easy 
at first, eliminating all conditional 
branches from a comparison loop 

is surprisingly difficult. Even with 
a correct algorithm, some un-
derlying detail of the high-level 
language implementation (such 
as garbage collection) could still 
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leave a measurable timing differ-
ence. The standard C memcmp() 
function is unsafe as well because 
it also terminates early.

Footprints in the Cache
Like the original RSA timing at-
tack, the HMAC timing attack 
combines many measurements of 
the entire operation to find the 
target’s secret. However, more 
powerful side channel attacks can 
give insight into an algorithm’s 
intermediate working values, re-
vealing the secret more quickly.

Modern systems employ a 
CPU cache to keep frequently ac-
cessed memory close to where it’s 
needed. When data for a given ad-
dress is in the cache, it’s returned 
immediately. If not, it’s fetched 
from memory into the cache, 
stalling the CPU for a few more 
cycles. A cache is often divided 
into blocks called lines.

Because a cache is smaller than 
the memory it shadows, the CPU 
must have a policy for filling and 
reusing its space. The most com-
mon implementation is a set asso-

ciative cache, which maps multiple 
addresses to the same cache line 
on the basis of some fraction of 
the upper address bits. For exam-
ple, the addresses 0x100, 0x200, 
and 0x800 would all use the same 
cache line if the cache had 256 
lines of one byte each. “Set” refers 
to the number of possible destina-
tion cache lines per address (that 
is, N-way). The CPU evicts older 
entries when data is loaded into an 
already-filled cache line.

AES (Advanced Encryption 
Standard) is a standard block cipher. 
It encrypts and decrypts data with 
a secret key, using a combination 
of primitives such as MixColumns, 
ShiftRows, and SubBytes over 
many rounds (10 for a 128-bit 
key). A common optimization 
technique on 32-bit processors is to 
precompute a series of tables on the 
basis of the combination of these 
primitives. AES encryption then 
becomes a series of table lookups 
and XOR operations.

Because the index for these 
AES tables is the XOR of a plain-
text byte and a key byte, the in-
dices themselves must remain 
secret. However, a spy process 
running on the same system can 
observe the variable timing of 
the AES encryption due to cache 
behavior, narrowing down the 
possible values for the key.6 Even 
if running a spy process isn’t pos-
sible, a remote attacker can of-
ten trigger changes in the system 
cache state by interacting with 
other processes and timing those 
unrelated tasks’ behavior.

Dag Arne Osvik and his col-
leagues have described two useful 
ways to induce variability and ob-
serve cache behavior: Evict+Time 
and Prime+Probe.6

Evict+Time works as follows:

1.	Trigger an encryption in the 
target process.

2.	Evict memory from chosen 
cache lines by accessing the 
appropriate addresses in the 
attacker’s process.

3.	Trigger and time another en-
cryption of the same plaintext.

The first step ensures that all the 
AES lookup tables accessed by 
the given plaintext and key are 
cached. The second step forces 
the CPU to evict part of one AES 
table that the attacker is target-
ing, on the basis of a guess of the 
key byte. The final step tests the 
attacker’s hypothesis. If a cache 
miss occurs and the AES en-
cryption takes longer than other 
cases, the guess for the XOR of 
the plaintext and key bytes was 
correct and caused the CPU to 
reload the table from RAM after 
it had been evicted. If not, the 
guess was incorrect. The attacker 
repeats this process to narrow the 
possible key values.

Prime+Probe (see Figure 1) is 
more powerful. It’s analogous to 
placing a film negative behind an 
object and measuring the outline 
cast by the object’s shadow. Instead 
of timing the encryption process, 
which is subject to noise and jit-
ter due to surrounding code in 
the target, the attacker repeatedly 
times accesses to its own memory 
while the target encrypts. Each 
time an encryption occurs, the 
CPU evicts one or more lines of 
the attacker’s memory from the 
cache, causing timing variation. 
Because the cache eviction is local 
to the attacker, countermeasures 
such as randomizing or normaliz-
ing the total encryption time have 
no effect.

Such an attack isn’t merely a 
timing attack. Although time is 
the method for probing cache be-
havior, this attack could use other 
methods to determine the cache 
state. For example, if an instruc-
tion provided the number of valid 
cache lines for the current task, it 
would directly provide the same 
information obtained from this 
timing side channel.

Intel and AMD (and previ-
ously, Via) introduced AES in-
structions to address this problem 

AES process

Cache

Spy process

Figure 1. In a Prime+Probe attack, a spy process probes 

the cache by monitoring timing of accesses to its 

own memory. As the target process encrypts, it evicts 

portions of the attacker’s memory from the cache, 

resulting in longer access times. The access times 

for the individual regions of the attacker’s memory 

correspond to which tables the encryption process 

accessed, and thus the target’s key.
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and increase performance. Unfor-
tunately, owing to the structure 
of AES, there appears to be no 
way to build a high-performance 
implementation on a general-pur-
pose CPU while avoiding cache 
side channels.

Which Way Did He Go?
A related but even more powerful 
attack uses the branch prediction 
cache’s status as a side channel.7 
Instead of detecting memory ac-
cesses to the key data, this attack 
determines the code path the tar-
get process takes while executing 
the encryption code.

As I previously described, 
square-and-multiply has an op-
tional multiplication step. If the at-
tacker can detect when this branch 
is taken, he or she can determine 
which bits of the key are ones. 
(Other, more optimized routines 
such as sliding-window exponen-
tiation have similar weaknesses.)

Because modern CPUs have a 
deep pipeline, they implement a 
branch prediction unit, which keeps 
track of the target address and 
whether the branch was taken in 
a cache called the branch prediction 
target buffer (BTB). As with the 
memory cache, an attacker can 
influence and measure the cache 
state by performing jumps and 
timing either the encryption pro-
cess (as in Evict+Time) or its own 
execution speed (Prime+Probe).

One potential hurdle for 
branch prediction side channel at-
tacks is disruption due to support 
code or other processes running. 
This adds noise to the measure-
ments. However, Onur Aciiçmez 
and his colleagues discovered that 
this noise was highly periodic.7 By 
taking several different measure-
ments, they could select the one 
with the lowest noise and use it 
as the source for the key bits they 
were detecting. Unlike the cache 
attacks on AES, such an attack 
can derive enough key bits from a 
single trace that repeated analysis 
is unnecessary.

S ide channel attacks were once 
esoteric, remaining the do-

main of special-purpose hardware. 
However, with the advent of cloud 
computing and virtualized servers, 
you can no longer assume that at-
tackers are remote. Advanced sta-
tistical methods and modeling have 
given them precise measurements 
independent of jitter. Meanwhile, 
CPUs’ increasing microarchitec-
tural complexity has created more 
side channels to exploit. Any soft-
ware developer who writes or 
deploys an application utilizing 
cryptography must be aware of this 
powerful class of attacks. 
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